cho các số nguyên a,b,c,d thỏa mãn: a>b>c>d>0. CMR nếu a/b=c/d thì a+d>b+c
Cho các số hữu tỉ a, b, c, d và b khác 0 thỏa mãn a+b+c+d/a+b-c+d=a-b+c+d/a-b-c+d. CMR c=0
cho 4 số a,b,c,d thỏa mãn a+b/c+d=b+c/d+a (a+b+c+d khác 0 ) cmr a=c
cho các số nguyên a;b;c;d thỏa mãn điều kiện: a+b=c+d và a.b+1=c.d. CMR: c=d
Cho a,b,c,d là các số nguyên dương thỏa mãn: a2+ c2= b2+ d2 CMR : a+b+c+d là hợp số
Câu 1: Cho a, b, c, d, nguyên dương thỏa mãn: a>b>c>d>0
Chứng minh rằng: nếu a/b=c/d thì a+d = b+c
Câu 2: Chứng minh rằng nếu 0<a1<a2<a3<............<a9 thì
a1+a2+..............+a9/a3+a6+a9 <3
cmr nếu a,b,c,d khác 0 thỏa mãn ab+ac/2=ba+bc/3=ca+cb/4 thì a/3=b/5=c/15
Cho các số nguyên dương a b c d thỏa mãn a^2 + b^2 + c^2 + d^2 chia hết cho 2 . CM : a + b + c + d là hợp số
cho a,b,c,d là các số nguyên dương thỏa mãn a^2+c^2=b^2+d^2 Chứng minh rằng: a+b+c+d là hợp số