BM

Cho các số nguyên dương a b c d thỏa mãn a^2 + b^2 + c^2 + d^2 chia hết cho 2 . CM : a + b + c + d là hợp số

AH
30 tháng 1 2023 lúc 23:58

Lời giải:
$a^2+b^2+c^2+d^2=(a+b)^2-2ab+(c+d)^2-2cd$
$=(a+b)^2+(c+d)^2-2ab-2cd$

$=(a+b+c+d)^2-2(a+b)(c+d)-2ab-2cd\vdots 2$

$\Rightarrow (a+b+c+d)^2\vdots 2$

$\Rightarrow a+b+c+d\vdots 2$

Mà $a,b,c,d$ là số nguyên dương nên $a+b+c+d>2$

Vậy $a+b+c+d$ là số chẵn lớn hơn 2, do đó nó là hợp số (đpcm)

Bình luận (0)

Các câu hỏi tương tự
ST
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
NP
Xem chi tiết
KN
Xem chi tiết
BY
Xem chi tiết
HK
Xem chi tiết
TD
Xem chi tiết