GC

Cho các số dương x,y,z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{z}=\dfrac{1}{x+y-z}=\dfrac{2020}{2021}\)

Tính giá trị biểu thức \(M=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}+\dfrac{1}{\sqrt{x+y-z}}\)

AH
15 tháng 8 2021 lúc 1:25

Lời giải:
\(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=\frac{1}{x+y-z}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{z}+\frac{1}{x+y-z}=\frac{x+y}{z(x+y-z)}\)

\(\Leftrightarrow (x+y)(\frac{1}{xy}-\frac{1}{z(x+y-z)})=0\)

\(\Leftrightarrow (x+y).\frac{z(x+y-z)-xy}{xyz(x+y-z)}=0\)

\(\Leftrightarrow (x+y).\frac{(z-x)(y-z)}{xyz(x+y-z)}=0\)

\(\Leftrightarrow (x+y)(z-x)(y-z)=0\)

Xét các TH sau:

TH1: $x+y=0$. TH này loại do ĐKXĐ $x,y>0$
TH2: $z-x=0\Leftrightarrow z=x$

$\Leftrightarrow \frac{1}{y}=\frac{2020}{2021}$

\(M=\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}=\frac{2}{\sqrt{y}}=2\sqrt{\frac{2020}{2021}}\)

TH3: $y-z=0$ tương tự TH2, ta có \(M=2\sqrt{\frac{2020}{2021}}\)

Bình luận (0)

Các câu hỏi tương tự
KG
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
HT
Xem chi tiết
DH
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết