Violympic toán 9

LQ

Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh rằng

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\le\frac{3}{4}\)

NH
19 tháng 2 2020 lúc 23:36

bđt trái dấu rồi nha!

\(P=\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)

+ Áp dụng bđt Cauchy ta có :

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge3\sqrt[3]{\frac{a^3}{\left(b+1\right)\left(c+1\right)}\cdot\frac{b+1}{8}\cdot\frac{c+1}{8}}=\frac{3}{4}a\). Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}2a=b+1\\b=c\end{matrix}\right.\)

+ Tương tự ta c/m đc : \(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{a+1}{8}+\frac{c+1}{8}\ge\frac{3}{4}b\). Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}2b=a+1\\a=c\end{matrix}\right.\)

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge\frac{3}{4}c\). Dấu "=" \(\Leftrightarrow2c=a+1=b+1\)

Do đó : \(P\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\) \(\ge\frac{1}{2}\cdot3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{4}\)

Dấu "=" \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BK
Xem chi tiết
PM
Xem chi tiết
LQ
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
NA
Xem chi tiết