AN

Cho các số a, b, c > 0 và a + b + c = 21. Tìm GTLN của:
a, \(\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le9\)
b, \(\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le12\)

NL
7 tháng 4 2022 lúc 14:26

Với mọi số thực dương x;y;z ta có:

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

Áp dụng:

a.

\(\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le\sqrt{3\left(a+2+b+2+c+2\right)}=\sqrt{3\left(21+6\right)}=9\)

b.

\(\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le\sqrt{3\left(a+b+2+b+c+2+c+a+2\right)}\)

\(\Rightarrow\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le\sqrt{6\left(a+b+c\right)+18}=\sqrt{6.21+18}=12\)

Dấu "=" xảy ra khi \(a=b=c=7\)

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
PQ
Xem chi tiết
LL
Xem chi tiết
TL
Xem chi tiết
LL
Xem chi tiết