Bài 8: Rút gọn biểu thức chứa căn bậc hai

HM

Cho các biểu thức:

A= (\(2\sqrt{32}\)-\(2\sqrt{18}\)-\(\sqrt{50}\) ) : \(\sqrt{2}\) ; B= \(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{5\sqrt{x}+2}{4-x}\left(vớix\ge0;x\ne4\right)\)

a) Rút gọn các biểu thức A, B;

b) Tìm các giá trị của x để giá trị của biểu thức A lớn hơn giá trị của biểu thức B;

TQ
4 tháng 5 2019 lúc 20:15

a) A=\(\left(2\sqrt{32}-2\sqrt{18}-\sqrt{50}\right):\sqrt{2}=\left(2\sqrt{16.2}-2\sqrt{9.2}-\sqrt{25.2}\right):\sqrt{2}=\left(8\sqrt{2}-6\sqrt{2}-5\sqrt{2}\right):\sqrt{2}=-3\sqrt{2}:\sqrt{2}=-3\)

B=\(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{5\sqrt{x}+2}{4-x}=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}-\frac{5\sqrt{x}+2}{x-4}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{2x-4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

b) Để A>B thì \(\frac{3\sqrt{x}}{\sqrt{x}+2}< -3\Leftrightarrow-\sqrt{x}>\sqrt{x}+2\Leftrightarrow2\sqrt{x}< -2\Leftrightarrow\sqrt{x}< -1\left(ktm\right)\)Vậy không có giá trị của x để giá trị biểu thức A lớn hơn giá trị của biểu thức B

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết