Bài 8: Rút gọn biểu thức chứa căn bậc hai

LM

Cho bt A=\(\sqrt{25x-25}-\sqrt{16x-16}-\sqrt{4x+4}\)

a, Rút gọn A

b, Tìm x sao cho A=10

MP
17 tháng 8 2018 lúc 15:13

a) điều kiện \(x\ge1\)

ta có \(A=\sqrt{25x-25}-\sqrt{16x-16}-\sqrt{4x+4}\)

\(\Leftrightarrow A=\sqrt{25\left(x-1\right)}-\sqrt{16\left(x-1\right)}-\sqrt{4\left(x+1\right)}\)

\(\Leftrightarrow A=5\sqrt{x-1}-4\sqrt{\left(x-1\right)}-2\sqrt{x+1}=\sqrt{x-1}-2\sqrt{x+1}\)

b) để \(A=10\Leftrightarrow\sqrt{x-1}-2\sqrt{x+1}=10\)

\(\Leftrightarrow x-1+4x+4-4\sqrt{\left(x^2-1\right)}=100\)

\(\Leftrightarrow5x-97=4\sqrt{x^2-1}\Leftrightarrow25x^2-970x+9409=16x^2-16\)

\(\Leftrightarrow9x^2-970x+9425\Rightarrow x\)

nhớ điều kiện nha :)

Bình luận (0)
DS
17 tháng 8 2018 lúc 15:17

a) A=\(\sqrt{25\left(x-1\right)}-\sqrt{16\left(x-1\right)}+\sqrt{4\left(x-1\right)}\)

A=\(\sqrt{x-1}\left(\sqrt{25}-\sqrt{16}+\sqrt{4}\right)\)

A=\(3\sqrt{x-1}\)

b) Ta có A=10 => \(3\sqrt{x-1}\)=10=>x-1=\(\dfrac{100}{9}\)=>x=\(\dfrac{109}{9}\)

Bình luận (0)