cho 4 số a+b+c+d=9 vậy giá trị nhỏ nhất của biểu thứcp=a^2+b^2+c^2+d^2
Cho 3 số a,b,c thoả mãn a+b+c=2. Tìm giá trị nhỏ nhất của biểu thức A=a^2+b^2+c^2
cho các số a,b,c,d thoả mãn 3a+2b-c-d=1; 2a+2b-c+2d=2 ; 4a-2b-3c+d=3 ; 8a+b-6c+d=4 thì giá trị của a+b+c+d là
Cho 3 số a,b,c thỏa mãn a + b + c = 2. tìm giá trị nhỏ nhất của biểu thức :
A = a+ b+ c
A.
B.
C.
D.
Cho a,b,c,d thoả mãn a2 +b2+c2+d2=2019 và ad+bc=0.tính giá trị của A=ab+cd
cho các số a,b,c,d thỏa mãn\(\hept{\begin{cases}a+b+c+d=3\left(1\right)\\a^2+b^2+c^2+d^2=3\left(2\right)\end{cases}}\)
tính các giá trị của a,b,c khi d đạt giá trị lớn nhất có thể được
Tìm giá trị nhỏ nhất của biểu thức : \(P=a+b+c\) . Biết rằng a,b,c là các số thực thoả mãn điều kiện \(3\le a,b,c\le5\) và \(a^2+b^2+c^2=50\).
Giúp mình nha . Mai mình phải nộp rồi.
Cảm ơn trước .
Cho a,b,c >0 thoả mãn ab+bc+ca=3. Tìm giá trị nhỏ nhất của
P=\(\dfrac{1+3a}{1+b^2}+\dfrac{1+3b}{1+c^2}+\dfrac{1+3c}{1+a^2}\)