a: 2x-1=7
=>2x=8
=>x=4
Thay x=4 vào B, ta được:
\(B=1-\dfrac{1}{4+3}=1-\dfrac{1}{7}=\dfrac{6}{7}\)
b: \(A=\dfrac{2x^2+4x+13}{x^2-9}+\dfrac{3}{3-x}-\dfrac{x}{x+3}\)
\(=\dfrac{2x^2+4x+13-3x-9-x^2+3x}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+4x+4}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+2\right)^2}{\left(x-3\right)\left(x+3\right)}\)
b: P=A:B
\(=\dfrac{\left(x+2\right)^2}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+3-1}{x+3}\)
\(=\dfrac{\left(x+2\right)^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+2}=\dfrac{x+2}{x-3}\)
c: Để P nguyên thì x-3+5 chia hết cho x-3
=>\(x-3\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{4;8\right\}\)