Bài 7: Phương trình quy về phương trình bậc hai

DN

Cho biểu thức P=\(\left(\frac{\sqrt{X}+2}{\sqrt{X}+3}+\frac{X^2-X+3}{X+\sqrt{X}-6}\right):\left(\frac{\sqrt{X}}{\sqrt{X}+2}+\frac{\sqrt{X}+4}{X+5\sqrt{X}+6}\right)\)

a,Rút gọn P

B,Tìm x để P lớn hơn hoặc bằng 0

c,Tìm các giá trị của x,y để\(\left(x-4\right)P+y^2+2xy+1+\left|2x+3y+1\right|=0\)

NL
8 tháng 4 2019 lúc 15:00

c/

\(\left(x-4\right)P+y^2+2xy+1+\left|2x+3y+1\right|=0\)

\(\Leftrightarrow\frac{\left(x-4\right)\left(x^2-1\right)}{x-4}+y^2+2xy+1+\left|2x+3y+1\right|=0\)

\(\Leftrightarrow x^2+y^2+2xy+\left|2x+3y+1\right|=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left|2x+3y+1\right|=0\)

Do \(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left|2x+3y+1\right|\ge0\end{matrix}\right.\) \(\forall x;y\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\2x+3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Bình luận (0)
NL
8 tháng 4 2019 lúc 14:57

ĐKXĐ: \(x\ge0;x\ne4\)

\(P=\left(\frac{\sqrt{x}+2}{\sqrt{x}+3}+\frac{x^2-x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\right)\)

\(P=\left(\frac{x-4+x^2-x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{x+3\sqrt{x}+\sqrt{x}+4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\right)\)

\(P=\left(\frac{x^2-1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2}\right)\)

\(P=\frac{x^2-1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}.\left(\frac{\sqrt{x}+3}{\sqrt{x}+2}\right)\)

\(P=\frac{x^2-1}{x-4}\)

b/ Để \(P\ge0\Leftrightarrow\frac{x^2-1}{x-4}\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-1\ge0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-1\le0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>4\\-1\le x\le1\end{matrix}\right.\)

Kết hợp với ĐKXĐ \(x\ge0\), \(\Leftrightarrow\left[{}\begin{matrix}x>4\\0\le x\le1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
BH
Xem chi tiết
DU
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
PN
Xem chi tiết
MX
Xem chi tiết
TN
Xem chi tiết
DA
Xem chi tiết