Violympic toán 9

CG

Cho biểu thức : \(P=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\right)\) với x > 0 ; \(x\ne4\)

a, Rút gọn biểu thức P

b, Tìm GTNN của biểu thức P

HK
27 tháng 7 2019 lúc 20:12

Bài Làm:

a, \(P=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\right)\)

\(=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\frac{x+3}{\sqrt{x}-2}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-3}{\sqrt{x}-2}:\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-3}{\sqrt{x}-2}:\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+3}{\sqrt{x}-2}:\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x+3}{\sqrt{x}-2}:\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(=\frac{x+3}{\sqrt{x}-2}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{x+3}{\sqrt{x}}\)

Bình luận (0)

Các câu hỏi tương tự
CG
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
TH
Xem chi tiết
MM
Xem chi tiết
TH
Xem chi tiết
PG
Xem chi tiết
NH
Xem chi tiết
NS
Xem chi tiết