Violympic toán 9

NS

1.cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) với x>0,x\(\ne4\)

a.rút gọn biểu thức M

b.tính giá trị của M khi x=3+2\(\sqrt{2}\)

c.tìm giá trị của x để M>0

NU
12 tháng 8 2021 lúc 17:04

a)A=\(\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b) Thay x=3+2\(\sqrt{2}\)

A=\(\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}\)=\(\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2-2}}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)

A=\(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)

c)Ta có \(\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}\)>0

\(\Rightarrow\dfrac{2}{\sqrt{x}}\)<1\(\Rightarrow\sqrt{x}\)>2\(\Rightarrow x>4\)

Bình luận (1)

Các câu hỏi tương tự
NS
Xem chi tiết
NS
Xem chi tiết
H2
Xem chi tiết
VT
Xem chi tiết
BB
Xem chi tiết
TN
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
TN
Xem chi tiết