Ôn tập chương 1: Căn bậc hai. Căn bậc ba

TT

Cho biểu thức

\(P=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)Rút gọn P

Các bạn giải gấp cho mình câu này nha . Mình đang cần rất gấp bạn nào giải đúng mình tick cho

TP
26 tháng 7 2019 lúc 10:58

\(P=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x+\sqrt{x}-2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{x+\sqrt{x}-2}\)

\(P=\frac{x-\sqrt{x}-x+x\sqrt{x}+6-x-3\sqrt{x}-2}{x+\sqrt{x}-2}\)

\(P=\frac{-x+x\sqrt{x}+4-4\sqrt{x}}{x+\sqrt{x}-2}\)

\(P=\frac{x\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(\sqrt{x}-1\right)\left(x-4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)

\(P=\sqrt{x}-2\)

Bình luận (1)
TP
26 tháng 7 2019 lúc 11:52

@Trần Ngọc Thảo

\(Q=\frac{\left(x+27\right)\cdot P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\ge6\)

\(\Leftrightarrow Q=\frac{\left(x+27\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\ge6\)

\(\Leftrightarrow\frac{x+27}{\sqrt{x}+3}\ge6\)

\(\Leftrightarrow x+27\ge6\left(\sqrt{x}+3\right)\)

\(\Leftrightarrow x+27-6\sqrt{x}-18\ge0\)

\(\Leftrightarrow x-6\sqrt{x}+9\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)^2\ge0\)( luôn đúng )

Vậy \(x\ge0\)thì bất phương trình luôn đúng

\(\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết