MT

Cho biểu thức P=\(\dfrac{a^2+a}{a^2-2a+1}\):(\(\dfrac{a+1}{a}+\dfrac{1}{a-1}\)\(+\)\(\dfrac{2-a^2}{a^2-a}\))

a, Rút gọn P

b, Tìm a để P=\(\dfrac{-1}{2}\)

c, Tìm GTNN của P khi a>1

NT
22 tháng 6 2023 lúc 12:57

 

ĐKXĐ: a<>1; a<>0; a<>-1

a: \(P=\dfrac{a\left(a+1\right)}{\left(a-1\right)^2}:\dfrac{a^2-1+a+2-a^2}{a\left(a-1\right)}\)

\(=\dfrac{a\left(a+1\right)}{\left(a-1\right)^2}\cdot\dfrac{a\left(a-1\right)}{a+1}=\dfrac{a^2}{a-1}\)

b: Khi P=-1/2 thì a^2/(a-1)=-1/2

=>2a^2=-a+1

=>2a^2+a-1=0

=>2a^2+2a-a-1=0

=>(a+1)(2a-1)=0

=>a=1/2(nhận) hoặc a=-1(loại)

c: \(P=\dfrac{a^2-1+1}{a-1}=a+1+\dfrac{1}{a-1}=a-1+\dfrac{1}{a-1}+2\)

=>\(P>=2\cdot\sqrt{\left(a-1\right)\cdot\dfrac{1}{a-1}}+2=4\)

Dấu = xảy ra khi a-1=1

=>a=2

Bình luận (0)

Các câu hỏi tương tự
VN
Xem chi tiết
H24
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết
MD
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết