\(P=\dfrac{1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+2}-\dfrac{2\sqrt{x}}{x-4}\)
a) \(ĐKXĐ:x\ge0;x\ne4\)
b) \(P=\dfrac{1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+2}-\dfrac{2\sqrt{x}}{x-4}\)
\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+2}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+2+2\left(\sqrt{x}-2\right)-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+2+2\sqrt{x}-4-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
Vậy: \(P=\dfrac{1}{\sqrt{x}+2}\)
_Chúc bạn học tốt_