a: \(A=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b:Để A>0 thì \(\sqrt{x}-1< 0\)
=>0<x<1
a) \(P=\left[\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right].\dfrac{\left(1-x\right)^2}{2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(1-x\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{-2\sqrt{x}\left(x-1\right)^2}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\)
\(=\dfrac{-2\sqrt{x}.\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\)
\(=-\sqrt{x}.\left(\sqrt{x}-1\right)\)
b) Yêu cầu bài toán: \(-\sqrt{x}.\left(\sqrt{x}-1\right)>0\Leftrightarrow\sqrt{x}-1< 0\) (do \(-\sqrt{x}< 0\)) \(\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)
a) \(ĐKXĐ:x\ge0;x\ne1\)
\(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(=\left[\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right].\dfrac{\left(1-x\right)^2}{2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(1-x\right)^2}{2}\)
\(=\dfrac{\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(1-x\right)^2}{2}\)
\(=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left[\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\right]^2}{2}\)
\(=\dfrac{-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b) \(A>0\)
\(\Rightarrow-\sqrt{x}\left(\sqrt{x}-1\right)>0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}< 0\\\sqrt{x}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}>0\\\sqrt{x}-1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow0< x< 1\)
c) \(A=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
- Dấu "=" xảy ra khi \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{4}\)
- Vậy \(MaxA=\dfrac{1}{4}\)