\(ĐK:x\ge0\ne1\\ P< 0\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\left(\sqrt{x}+1>0\right)\\ \Leftrightarrow x< 1\\ \Leftrightarrow0\le x< 1\)
\(ĐK:x\ge0\ne1\\ P< 0\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\left(\sqrt{x}+1>0\right)\\ \Leftrightarrow x< 1\\ \Leftrightarrow0\le x< 1\)
Cho hai biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x+6}}\) và B=\(\dfrac{4}{x-1}+\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-\dfrac{5}{1-\sqrt{x}}\)(với x≥0,x≠1)
a.tính giá trị biểu thức a khi x=4
b.rút gọn P
C.VỚI p=a.b ,tìm giá trị của x để p<0
1) Cho biểu thức B=(\(\dfrac{1}{3-\sqrt{x}}\)-\(\dfrac{1}{3+\sqrt{x}}\)) . \(\dfrac{3+\sqrt{x}}{\sqrt{x}}\) ( với x>0; x≠9)
a) Rút gọn biểu thức B
b) Tìm các giá trị của x để B>0
Câu 4: Cho biểu thức: \(M=\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x}\) với \(x>0,\) \(x\) ≠ 1
a. Điều kiện biểu thức có nghĩa
b. Rút gọn M
c. Tìm \(x\) để M < 0
cho biểu thức A\(\left(1+\dfrac{1}{\sqrt{X}}\right)\div\left(\dfrac{1}{\sqrt{X}}-\dfrac{1}{\sqrt{X-X}}\right)+\dfrac{5}{\sqrt{X}}\)với x lớn hơn 0;x≠1
a)rút gọn biểu thức a
b)tìm x để a =5
c)tìm x để A lớn hơn 4
giải rõ ra cho mik ạ
Với \(x>0\) cho 2 biểu thức \(A=\dfrac{2+\sqrt{x}}{\sqrt{x}}\) và \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
1) Tính giá trị của biểu thức A khi \(x=64\)
2) Rút gọn biểu thức B
3) Tìm x để \(\dfrac{A}{B}>\dfrac{3}{2}\)
Cho biểu thức \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\left(x>0,x\ne1\right)\)
a, Rút gọn P
b, Tìm x để P=1
1/ Cho hai biểu thức A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\) và B=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+ \(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)-\(\dfrac{2x}{x-9}\) với x>0 , x≠9
a) Rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để P<0 với P=A.B
Cho A = \(\dfrac{\sqrt{x}}{2\sqrt{x}+1}\); B = \(\dfrac{1}{2\sqrt{x}+1}\)(ĐKXĐ: x ≥ 0; x ≠ \(\dfrac{1}{4}\)). Tìm x để biểu thức: P = 5A + B nguyên.
Cho biểu thức A = \(\left(\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\) với x>0 x\(\ne\)1
a, rút gọn biểu thức b, tìm giá trị của x để A \(\le\dfrac{3}{\sqrt{x}}\)