NB

Cho biểu thức P = ((2sqrt(x))/(sqrt(x) + 3) + (sqrt(x))/(sqrt(x) - 3) - (3x + 3)/(x - 9)) / ((2sqrt(x) - 2)/(sqrt(x) - 3) - 1) Tổng các giá trị nguyên của x để P

NT
31 tháng 3 2023 lúc 20:22

\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}}{x-9}+\dfrac{3x+3}{x-9}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)

\(=\dfrac{\left(3x-3\sqrt{x}\right)\left(\sqrt{x}+1\right)+\left(3x+3\right)\left(\sqrt{x}+3\right)}{\left(x-9\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3x\sqrt{x}+3x-3x-3\sqrt{x}+3x\sqrt{x}+9x+3\sqrt{x}+9}{\left(x-9\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{6x\sqrt{x}+9x+9}{\left(x-9\right)\left(\sqrt{x}+1\right)}\)

Bình luận (0)

Các câu hỏi tương tự
IK
Xem chi tiết
TT
Xem chi tiết
LA
Xem chi tiết
HV
Xem chi tiết
PC
Xem chi tiết
QD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MD
Xem chi tiết