1. Cho biểu thức: A = \(1+\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}.\)
a) Rút gọn A.
b) Tìm a để A = \(\dfrac{\sqrt{6}}{1+\sqrt{6}}\).
c) CMR: A \(\ge\dfrac{2}{3}\).
1. Cho biểu thức : A = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\).
a) Rút gọn A.
b) Tìm x để A < 0.
2. Cho biểu thức: B = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\).
a) Rút gọn B.
b) Tìm x để B = \(\dfrac{1}{2}\)
c) Tìm x để B > 0.
3. a) Tìm GTLN của biểu thức: A = \(\dfrac{1}{x-\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức: B = \(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\).
Bài 1: Giải pt
a) \(\sqrt{9x+9}-2\sqrt{\dfrac{x+1}{4}}=4\)
b) \(\sqrt{4x^2-4x+1}=2x-1\)
Bài 2: Cho biểu thức
A=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Tìm ĐKXĐ
b) Rút gọn A
c) So sánh giá trị của A với \(\dfrac{1}{3}\)
Bài 3: Thực hiện phép tính
a) \(\left(\sqrt{32}-2\sqrt{18}\right).\dfrac{\sqrt{2}}{2}\)
b) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{10}{1+\sqrt{6}}\)
Bài 4: Giải pt
a) \(\sqrt{x^2-2x+1}=x+2\)
b) \(\sqrt{3x+2}=\sqrt{x+5}\)
Bài 5: Cho biểu thức
A= \(\left(\dfrac{3\sqrt{x}+x}{x-25}+\dfrac{1}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\)
a) Tìm ĐKXĐ và rút gọn A
b) Chứng minh rằng A<1
1. Cho biểu thức:
A = \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1.\)
a) Rút gọn A.
b) Tìm x để A = 2.
c) Tìm GTNN của A.
2. Tìm GTNN của B = \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}.\)
1. Cho A = \(\left(\dfrac{\sqrt{a}}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
a) Rút gọn A.
b) Tìm a để A = 4; A\(>-6\).
c) Tính A khi \(a^2-3=0\).
2. Cho B = \(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\).
a) Rút gọn B.
b) Tính B khi a = \(\dfrac{\sqrt{6}}{2+\sqrt{6}}\).
c) Tìm a để \(\sqrt{B}>B\)
Câu 1: Cho biểu thức: P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}\)- \(\dfrac{5}{a+\sqrt{a}-6}\) + \(\dfrac{1}{2-\sqrt{a}}\) với a lớn hơn hoặc bằng 0, a # 4
a) Rút gọn P
b) Tìm a sao cho P < 1
c) Tìm a để P = \(\sqrt{2012}\)
Câu 2: Cho biểu thức P = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}\) + \(\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}\)- \(\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\) với x lớn hơn hoặc bằng 0, x # 1
a) Rút gọn P
b) Tìm x để P = \(\dfrac{1}{2}\)
c) CMR: P nhỏ hơn hoặc bằng \(\dfrac{2}{3}\)
Cho biểu thức:
E=\(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}\)-\(\dfrac{2a+\sqrt{a}}{\sqrt{a}}\) +1 với a>0
a) rút gọn E
b) Tính giá trị của E khi a=3-\(2\sqrt{2}\)
Cho biểu thức :
A = \(\left(\dfrac{\sqrt{x}-x-3}{x-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{8\sqrt{x}}{x-1}\right)\)
a) Rút gọn A
b) Tĩnh giá trị của A khi x = \(4-2\sqrt{3}\)
c) So sánh A với 1
Cho biểu thức \(A=\left(\dfrac{a\sqrt{a}-3}{\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)}-\dfrac{2\left(\sqrt{a}-3\right)}{\sqrt{a}+1}-\dfrac{\sqrt{a}+3}{\sqrt{a}-3}\right):\dfrac{a+8}{a-1}\)với a \(\ge0;a\ne9\)
Rút gọn biểu thức A.