a) Ta có: \(N=\left(\frac{x+3}{x-3}+\frac{18}{9-x^2}+\frac{x-3}{x+3}\right):\left(1-\frac{x+1}{x+3}\right)\)
\(=\left(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\frac{18}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{x+3}{x+3}-\frac{x+1}{x+3}\right)\)
\(=\frac{x^2+6x+9-18-\left(x^2-6x+9\right)}{\left(x-3\right)\left(x+3\right)}:\frac{2}{x+3}\)
\(=\frac{x^2+6x-9-x^2+6x-9}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{2}\)
\(=\frac{12x-18}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{2}\)
\(=\frac{12x-18}{x-3}\cdot\frac{1}{2}\)
\(=\frac{12x-18}{2x-6}\)
b)
ĐKXĐ: \(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)
Đặt \(N=-\frac{1}{2}\)
\(\Leftrightarrow\frac{12x-18}{2x-6}=-\frac{1}{2}\)
\(\Leftrightarrow12x-18=\frac{6-2x}{2}\)
\(\Leftrightarrow12x-18=3-x\)
\(\Leftrightarrow12x-18-3+x=0\)
\(\Leftrightarrow13x-21=0\)
\(\Leftrightarrow13x=21\)
hay \(x=\frac{21}{13}\)(tm)
Vậy: Khi \(N=-\frac{1}{2}\) thì \(x=\frac{21}{13}\)
c) Để N<0 thì 12x-18 và 2x-6 khác dấu
*Trường hợp 1:
\(\left\{{}\begin{matrix}12x-18>0\\2x-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x>18\\2x< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\frac{3}{2}\\x< 3\end{matrix}\right.\)\(\Leftrightarrow\frac{3}{2}< x< 3\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}12x-18< 0\\2x-6>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x< 18\\2x>6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \frac{3}{2}\\x>3\end{matrix}\right.\)(vô lý)
Vậy: Khi N<0 thì \(\frac{3}{2}< x< 3\)