AT

Cho biểu thức M : \(\dfrac{x}{x+3}\)\(\dfrac{2x}{x-3}\) + \(\dfrac{9-3^2}{x^2-9}\)
a) Tìm điều kiện xác định của bt M và rút gọn
b) Tính gtrj của M khi x = 2
c) Tìm gtrj nguyên của x để bt M nguyên

NM
29 tháng 12 2021 lúc 10:52

\(a,ĐK:x\ne\pm3\\ Sửa:M=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{x^2-9}\\ M=\dfrac{x^2-3x+2x^2+6x+9-3x^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x-3}\\ b,x=2\Leftrightarrow M=\dfrac{3}{2-3}=-3\\ c,M\in Z\Leftrightarrow x-3\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{0;2;4;6\right\}\left(tm\right)\)

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
TL
Xem chi tiết
CT
Xem chi tiết
SB
Xem chi tiết
NB
Xem chi tiết
NL
Xem chi tiết
TL
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết