RN

Cho biểu thức D = \(\dfrac{\left(2!\right)^2}{1^2}\) + \(\dfrac{\left(2!\right)^2}{3^2}\) + \(\dfrac{\left(2!\right)^2}{5^2}\) + ... + \(\dfrac{\left(2!\right)^2}{2015^2}\)

Tính D rồi so sánh D với 6.

 

H9
10 tháng 3 2023 lúc 12:23

\(D=\dfrac{\left(2!\right)^2}{1^2}+\dfrac{\left(2!\right)^2}{3^2}+\dfrac{\left(2!\right)^2}{5^2}+...+\dfrac{\left(2!\right)^2}{2015^2}\)

\(D=\left(2!\right)^2\left(\dfrac{1}{3^2}+\dfrac{1}{5^2}+...+\dfrac{1}{2015^2}\right)\)

Xét số hạng tổng quát dạng: \(\dfrac{1}{\left(2n+1\right)^2}\) với \(n\in N\ge1\)

Ta có: \(\left(2n+1\right)^2-2n\left(2n+1\right)=1>0\)

\(\Rightarrow\left(2n+1\right)^2>2n\left(2n+1\right)\Rightarrow\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{2n\left(2n+1\right)}\)

Do đó: \(\left\{{}\begin{matrix}\dfrac{1}{3^2}< \dfrac{1}{2.4}\\\dfrac{1}{5^2}< \dfrac{1}{4.6}\\....\\\dfrac{1}{2015^2}< \dfrac{1}{2014.2016}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}...+\dfrac{1}{2015^2}< 1+\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2014.2016}\)

\(\Leftrightarrow\dfrac{D}{\left(2!\right)^2}< 1+\dfrac{1}{2.4}+\dfrac{1}{4.6}+..+\dfrac{1}{2014.2016}\)

\(\Leftrightarrow D< 4\left(1+\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2014.2016}\right)\)

\(\Leftrightarrow D< 4+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{1007.1008}\)

\(\Leftrightarrow D< 4+\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{1008-1007}{1007.1008}\)

\(\Leftrightarrow D< 4+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{...1}{1007}-\dfrac{1}{1008}\)

\(\Leftrightarrow D< 5-\dfrac{1}{1008}< 5< 6\)

 

Bình luận (1)

Các câu hỏi tương tự
NC
Xem chi tiết
KJ
Xem chi tiết
HV
Xem chi tiết
LL
Xem chi tiết
VD
Xem chi tiết
NA
Xem chi tiết
NB
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết