Bài 8: Rút gọn biểu thức chứa căn bậc hai

MV

Cho biểu thức : \(B=(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}):\dfrac{\sqrt{x}-1}{2}\)

a, Rút gọn biểu thức B

b, Chứng minh rằng: B > 0 với mọi x > 0 và x khác 1

TN
10 tháng 8 2018 lúc 12:54

a. \(B=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\\ =\left(\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{2}\\ =\dfrac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)

b.Ta có:

\(B=\dfrac{2}{x+\sqrt{x}+1}\). Mà \(\left[{}\begin{matrix}2>0\\x+\sqrt{x}+1=\left[\left(\sqrt{x}\right)^2+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right]+\dfrac{3}{4}>0\end{matrix}\right.\)

Vậy B>0 \(\forall x\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LB
Xem chi tiết
ND
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
NB
Xem chi tiết