Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 8: Rút gọn biểu thức chứa căn bậc hai

CD

Cho biểu thức A= \(\frac{x-\sqrt{x}}{x-9}\) + \(\frac{1}{\sqrt{x}+3}\) -\(\frac{1}{\sqrt{x}-3}\)

a) rút gọn biểu thức A b)Tính giá trị của A khi x=5+\(2\sqrt{6}\)

c) Tìm x để A=\(\frac{3}{5}\) d)Tìm x để A có GTNN, tìm GTNN đó

VP
27 tháng 9 2020 lúc 22:08

a, ĐKXĐ: \(x\ge0;x\ne9\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-3-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)

b, \(x=5+2\sqrt{6}=2+3+2\sqrt{3}.\sqrt{2}=\left(\sqrt{3}+\sqrt{2}\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{3}+\sqrt{2}\)

\(\Rightarrow A=\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{\sqrt{3}+\sqrt{2}+2}{\sqrt{3}+\sqrt{2}+3}\)

c, \(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{5}\Leftrightarrow5\sqrt{x}+10=3\sqrt{x}+9\)

\(\Leftrightarrow2\sqrt{x}=-1\Rightarrow\) không tồn tại giá trị \(x\) thỏa mãn

d, \(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}\Leftrightarrow\sqrt{x}.A+3A=\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}\left(A-1\right)=2-3A\)

\(\Leftrightarrow\frac{2-3A}{A-1}=\sqrt{x}\ge0\Rightarrow\frac{2-3A}{A-1}\ge0\)

Do \(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}< 1\Rightarrow A-1< 0\) nên \(2-3A\le0\Leftrightarrow A\ge\frac{2}{3}\)

\(\Rightarrow MinA=\frac{2}{3}\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{2}{3}\Leftrightarrow x=0\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LT
Xem chi tiết
HM
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
WA
Xem chi tiết
H24
Xem chi tiết