Bài 1: Căn bậc hai

NL

Cho biểu thức A= \(\dfrac{\left(x^2+y\right)\left(\dfrac{1}{4}+y\right)+x^2y^2+\dfrac{3}{4}\left(\dfrac{1}{3}+y\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)

a) Tìm đkxđ A

b) Chứng minh A không phụ thuộc vài x

c) Tìm GTNN của A

NN
18 tháng 12 2017 lúc 14:03

a)...........................

b)\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+x^2y+\dfrac{y}{4}+y^2+x^2y^2+\dfrac{1}{4}+\dfrac{3y}{4}}{x^2y^2+1+y^2-x^2y-y+x^2}\)

\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+\dfrac{1}{4}+y+x^2y+y^2+x^2y^2}{x^2\left(y^2-y+1\right)+\left(y^2-y+1\right)}\)

\(\Leftrightarrow A=\dfrac{\dfrac{\left(x^2+1\right)}{4}+y\left(x^2+1\right)+y^2\left(x^2+1\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow A=\dfrac{\left(x^2+1\right)\left(\dfrac{1}{4}+y+y^2\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}=\dfrac{4y^2+4y+1}{4\left(y^2-y+1\right)}\)(không phụ vào x)

\(\Rightarrowđpcm\)

c) Bạn tự làm đi tới đây dễ rồi

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
MH
Xem chi tiết
TT
Xem chi tiết
VC
Xem chi tiết
H24
Xem chi tiết
HP
Xem chi tiết
LH
Xem chi tiết
AP
Xem chi tiết
TN
Xem chi tiết