NK

Cho biểu thức A = (4x+5) / x^2 + 2x +6 với x thuộc R . Tìm GTNN và GTLN của A

NC
18 tháng 12 2019 lúc 16:51

Ta có:

 \(A=\frac{4x+5}{x^2+2x+6}=\frac{x^2+2x+6-x^2-2x-6+4x+5}{x^2+2x+6}\)

\(=\frac{\left(x^2+2x+6\right)-x^2+2x-1}{x^2+2x+6}=1-\frac{\left(x-1\right)^2}{x^2+2x+6}\le1\)

=> max A = 1 tại x = 1

\(A=\frac{4x+5}{x^2+2x+6}=\frac{-\frac{4}{5}\left(x^2+2x+6\right)+\frac{4}{5}\left(x^2+2x+6\right)+4x+5}{x^2+2x+6}\)

\(=-\frac{4}{5}+\frac{4x^2+28x+49}{5\left(x^2+2x+6\right)}=-\frac{4}{5}+\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}\ge-\frac{4}{5}\)

=> min A = -4/5 <=> 2x + 7 = 0 <=> x = -7/2

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NL
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
VA
Xem chi tiết
PL
Xem chi tiết
TA
Xem chi tiết
VA
Xem chi tiết
NM
Xem chi tiết
BK
Xem chi tiết