PB

Cho ba điểm A, M, B phân biệt, thẳng hàng và M nằm giữa A, B. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, dựng hai tam giác đều AMC và BMD. Gọi P là giao điểm của AD và BC.

b) Chứng minh C P . C B + D P . D A = A B

c) Đường thẳng nối tâm của hai đường tròn ngoại tiếp hai tứ giác AMPC và BMPD cắt PA, PB tương ứng tại E, F. Chứng minh CDFE là hình thang.

CT
11 tháng 1 2019 lúc 4:38

b) Vì AMPC là tứ giác nội tiếp nên

C P M = 180 o − C A M = 120 o = C M B ⇒ Δ C P M ~ Δ C M B ( g . g ) ⇒ C P C M = C M C B ⇒ C P . C B = C M 2 ⇒ C P . C B = C M .

Tương tự  D P . D A = D M

Vậy  C P . C B + D P . D A = C M + D M = A M + B M = A B

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
NT
Xem chi tiết
PB
Xem chi tiết
VP
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết