Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho \(a=\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}\)và \(b=2\sqrt[3]{3}\)so sánh a và b
a) So sánh: \(A=\sqrt[3]{3+\sqrt{3}}+\sqrt[3]{3-\sqrt{3}}\)và \(B=2\sqrt[3]{3}\)
b) Cho \(A=\sqrt{6+\sqrt{6+...+\sqrt{6}}};B=\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}}\)
Chứng minh rằng: \(0< \frac{A-B}{A+B}< 1\)
Câu 1: Kết quả so sánh 3 và căn 8là:
A. 3 > \(\sqrt{8}\) B. 3 < \(\sqrt{8}\) C. 3 ≤ \(\sqrt{8}\) D. \(\sqrt{3}\)< \(\sqrt{8}\)
Câu 2. \(\sqrt{3x-2}\) xác định khi và chỉ khi:
A. x ≥ 0 B. x ≥ \(\dfrac{2}{3}\) C. x ≥ \(\dfrac{3}{2}\) D. x < \(\dfrac{2}{3}\)
Câu 3. \(\sqrt{\left(1-\sqrt{2}\right)^2}\) bằng:
A. \(3-2\sqrt{2}\) B. \(1-\sqrt{2}\) C. \(\sqrt{2}-1\) D. \(2\sqrt{2}+3\)
Câu 4. Kết quả của phép đưa thừa số ra ngoài dấu căn của biểu thức \(\sqrt{a^2b}\) (với a≥ 0; b ≥ 0) là:
A. \(-b\sqrt{a}\) B. \(b\sqrt{a}\) C .\(a\sqrt{b}\) D. \(-a\sqrt{b}\)
Câu 5. Khử mẫu của biểu thức \(\sqrt{\dfrac{2a}{b}}\) (với a b cùng dấu) ta được:
A. \(\dfrac{\sqrt{2ab}}{a}\) B. \(\dfrac{\sqrt{2ab}}{b}\) C. \(\dfrac{\sqrt{2ab}}{-b}\) D. \(\dfrac{\sqrt{2ab}}{\left|b\right|}\)
Câu 6: Hàm số y = \(\sqrt{5-m}.x+\dfrac{2}{3}\)là hàm số bậc nhất khi:
A. m ≠ 5 B. m > 5 C. m < 5 D. m = 5
Câu 7: Cho 3 đường thẳng (d1) : y = - 2x +1, (d2): y = x + 2, (d3) : y = 1 – 2x. Đường thẳng tạo với trục Ox góc nhọn là:
A. (d1) B. (d2) C. (d3) D. (d1) và (d3)
Câu 8: Hai đường thẳng y = -3x +4 và y = (m+1)x +m song song với nhau khi m bằng:
A. 4 B. -2 C. -3 D. -4
Câu 9. Hàm số bậc nhất nào sau đây nghịch biến?
A. y = \(7+\left(\sqrt{2}-3\right)x\) B. y = \(4-\left(1-\sqrt{3}\right)x\) C. y = \(-5-\left(1-\sqrt{2}\right)x\) D. y = 4+ x
Câu 10. Cặp đường thẳng nào sau đây có vị trí trùng nhau?
A. y=x +2 và y= -x+2 B. y= -3-2x và y= -2x-3
C. y= 2x -1 và y= 2+3x D. y=1 – 2x và y= -2x+3
Câu 11: Đường thẳng có phương trình x + y = 1 cắt đồ thị nào sau đây?
A.y+ x = -1 B. 2x + y = 1 C. 2y = 2 – 2x D. 3y = -3x +1
Câu 12: Cặp số (x; y) nào sau đây là một nghiệm của phương trình 2x – y = 1?
A.(1; -1) B. ( -1; 1) C. (3;2) D. (2; 3)
1) Tìm x không âm
a) 3-2\(\sqrt{8+x}\) > hoặc = 0
b) 3\(\sqrt{2x-1-3}\) < 0
2) So sánh
a) 2\(\sqrt{6}\) -3 và 1
b) 6 và 9-3\(\sqrt{2}\)
Cho A= \(\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)và B= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{x+\sqrt{x}-6}\)
a) rút gọn B
b) Cho x>0. so sánh A với 3
1) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk vs ah mk cần gấp
So sánh
a) 2 và 1+\(\sqrt{2}\)
b) 4 và 1+\(\sqrt{3}\)
c) -2\(\sqrt{11}\) và -10
d) 3\(\sqrt{11}\) và 12
cho \(a=\sqrt[3]{5\sqrt{2}}\) và \(b=\sqrt{5\sqrt[3]{2}}\)hãy so sánh a và b
\(B=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a/ Rút gọn B
b/ Tìm x để B = 1/2
c/ so sánh B và 2/3