MV

Cho A=\(\left(\dfrac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{3}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)  với x > 0, x khác 4

a) Rút gọn A

b) Tính A với x = 6-2√5

TT
19 tháng 5 2021 lúc 9:00

undefined

Bình luận (1)
NT
19 tháng 5 2021 lúc 11:07

a) Ta có: \(A=\left(\dfrac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{3}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)

\(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-4}\)

\(=\dfrac{4\left(\sqrt{x}-1\right)}{-4}=-\sqrt{x}+1\)

b) Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=-\sqrt{6-2\sqrt{5}}+1=-\left(\sqrt{5}-1\right)+1=-\sqrt{5}+1+1=2-\sqrt{5}\)

Bình luận (0)

Các câu hỏi tương tự
MV
Xem chi tiết
HA
Xem chi tiết
HM
Xem chi tiết
LA
Xem chi tiết
NL
Xem chi tiết
DN
Xem chi tiết
NP
Xem chi tiết
LA
Xem chi tiết
H24
Xem chi tiết