\(\frac{3x+2}{x-3}=\frac{3x-9+11}{x-3}=\frac{3\left(x-3\right)+11}{x-3}=\frac{3\left(x-3\right)}{x-3}+\frac{11}{x-3}=3+\frac{11}{x-3}\)
=> x-3 thuộc Ư(11)={-1,-11,1,11}
x-3 | -1 | -11 | 1 | 11 |
x | 2 | -8 | 4 | 14 |
Vậy....
Ta có: \(3x+2=3\left(x-3\right)+11\)
Để 3x+2 chia hết cho x-3 thì 3(x-3) +11 chia hết cho x-3
=> 11 chia hết cho x-3 vì 3(x-3) chia hết cho x-3
Mà x\(\in\)Z \(\Rightarrow x-3\in Z\)
=> \(x-3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Lập bảng giải tiếp