@Cool Kid:
\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)
\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)
Hay một BĐT mạnh (và đẹp:v) hơn là:
\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)
Ta cần chứng minh: \(VT-VP=\Sigma\frac{\left(a+b-c\right)^2\left(a-b\right)^2}{2\left(a+b\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
Giả sử \(a\ge c\ge b\) và đặt \(a=b+u+v,c=b+v\)
Bất đẳng thức này đúng theo Cauchy-Schwawrz:
\(VT-VP\ge\frac{4\left(c+a-b\right)^2\left(c-a\right)^2}{4\left(a+b+c\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
Last inequality is: https://imgur.com/tRsHOfr (mình không gửi ảnh được nên gửi link vậy!)
Done!
Cho a,b,c >=0
CMR:\(a\left(a-b\right)\left(a-c\right)+b\left(b-c\right)\left(b-a\right)+c\left(c-a\right)\left(c-b\right)\ge0\)
cm \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc;a,b,c\ge0\)
cm \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc;a,b,c\ge0\)
cho a;b;c;d là các số thực dương.CMR:\(\frac{\left(a-b\right)\left(a-c\right)}{a+b+c}+\frac{\left(b-c\right)\left(b-d\right)}{b+c+d}+\frac{\left(c-d\right)\left(c-a\right)}{c+a+d}+\frac{\left(d-a\right)\left(d-b\right)}{d+a+b}\ge0\)
Cho \(a,b,c\ge0\). Chứng minh rằng: \(a+b+c\ge\frac{3}{2}.\sqrt[3]{\left(a+b\right).\left(b+c\right).\left(c+a\right)}\)
cho a,b,c>0 .CMR \(\dfrac{a^2}{5a^2+\left(b+c\right)^2}+\dfrac{b^2}{5b^2+\left(c+a\right)^2}+\dfrac{c^2}{5c^2+\left(a+b\right)^2}\le\dfrac{1}{3}\)
Chặt hơn một bài toán quen thuộc :3
Với a, b, c là các số thực:
\(a^2+b^2+c^2-ab-bc-ca\ge\frac{\Sigma a^2\left(a-b\right)\left(a-c\right)}{\left(a+b+c\right)^2}\ge0\)
Hôm ngồi vọc Maple:
\(\left(\Sigma a^2-\Sigma ab\right)\left[\Sigma a^2\left(a-b\right)\left(a-c\right)\right]=\left[\Sigma a\left(a-b\right)\left(a-c\right)\right]^2+3\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\)
Có ai so sánh giúp mình 2 bất đẳng thức: \(\left\{\left[\Sigma a\left(a-b\right)\left(a-c\right)\right]^2+3\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\right\}\left(a+b+c\right)^2\) và \(\left(\Sigma a^2\left(a-b\right)\left(a-c\right)\right)^2\) vế nào lớn hơn được không?
Cho a+b+c=1, a, b, c\(\ge0\). Chứng minh
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(a,b,c>0\right)\)
\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le3,5\)
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Tìm GTLN của biểu thức
\(B=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)
biết \(a\ge b\ge c\ge0\)và a+b+c=1