Bài này khá dễ :
Vì \(0\le a;b;c\) và \(a+b+c=1\)nên : \(0\le a;b;c\le1\)
Suy ra : \(a\left(1-a\right)\ge0\)\(\Leftrightarrow a-a^2\ge0\Leftrightarrow a\ge a^2\)
CMTT : \(b\ge b^2;c\ge c^2\)
Vì \(a\ge a^2\Rightarrow11a\ge a^2+10a\) ( do \(a\ge0\))
\(\Leftrightarrow11a+25\ge a^2+10a+25=\left(a+5\right)^2\)
Suy ra : \(\sqrt{11a+25}\ge\left|a+5\right|=a+5\left(a\ge0\right)\)
Cmtt : \(\sqrt{11b+25}\ge b+5;\sqrt{11c+25}\ge c+5\)
Suy ra : \(M=\sqrt{11a+25}+\sqrt{11b+25}+\sqrt{11c+25}\ge a+b+c+15=16\) ( do a + b + c = 1 )
Dấu " = " xảy ra <=> (a;b;c) = (0;0;1) và các hoán vị
Vậy ...