1≥a=>a≥a2=>24a+25= 4a+20a+25≥4a2+2.2a.5+25=(2a+5)2
=>\(\sqrt{24a+25}\)≥2a+5
cmtt=> K≥ 2(a+b+c)+15=17
dấu "=" xảy ra <=> (a,b,c)~(1,0,0)
1≥a=>a≥a2=>24a+25= 4a+20a+25≥4a2+2.2a.5+25=(2a+5)2
=>\(\sqrt{24a+25}\)≥2a+5
cmtt=> K≥ 2(a+b+c)+15=17
dấu "=" xảy ra <=> (a,b,c)~(1,0,0)
Cho các số thực không âm $a, b, c$ thỏa mãn: $a+b+c=2021$. Tìm giá trị lớn nhất và giả trị nhỏ nhất của biểu thức: $P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}$.
Cho các số thực không âm a,b,c thỏa mãn a + b + c = 2021. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Cho các số không âm thỏa mãn x+y+z=3 . Tìm giá trị lớn nhất , nhỏ nhất của biểu thức \(M=\sqrt{x^2-6x+26}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
cho các số thực không âm a,b,c thỏa mãn a2+b2+c2=1
tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=\(\sqrt{\frac{a+b}{2}}+\sqrt{\frac{b+c}{2}}+\sqrt{\frac{c+a}{2}}\)
Cho a, b, c là các số thực không âm thỏa mãn a+b+c=3. Tìm giá trị lớn nhất của biểu thức \(K = \sqrt{12a+(b-c)^2} + \sqrt{12b+(a-c)^2} + \sqrt{12c+(a-b)^2}\)
cho các số thực không âm thỏa mãn điều kiện : \(\sqrt{a}+\sqrt{b}=2\)
Timg giá trị lớn nhất giá trị nhỏ nhất của biểu thức \(T=a\sqrt{a}+b\sqrt{b}\)
1 . )
Cho 3 số a,b,c dương. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\)
2
cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
cho a,b,c là các số thực không âm thỏa mãn \(a^2+b^2+c^2=1\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của P=\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)
Cho a, b, c là các số thực không âm thỏa mãn điều kiện a+b+c=3
Tìm giá trị lớn nhất của biểu thức:
\(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)