H24

Cho \(a,b,c\ge0\) và a+b+c =1. Tìm GTNN của biểu thức:

S= \(\dfrac{a}{\sqrt{b}+\sqrt{c}}+\dfrac{b}{\sqrt{a}+\sqrt{c}}+\dfrac{c}{\sqrt{a}+\sqrt{b}}\)

NL
18 tháng 1 2022 lúc 12:39

Ta có:

\(S=\dfrac{a^2}{a\left(\sqrt{b}+\sqrt{c}\right)}+\dfrac{b^2}{b\left(\sqrt{c}+\sqrt{a}\right)}+\dfrac{c^2}{c\left(\sqrt{a}+\sqrt{b}\right)}\ge\dfrac{\left(a+b+c\right)^2}{a\left(\sqrt{b}+\sqrt{c}\right)+b\left(\sqrt{c}+\sqrt{a}\right)+c\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(b+c\right)+\sqrt{b}\left(c+a\right)+\sqrt{c}\left(a+b\right)}\)

Mặt khác:

\(\sqrt{a}\left(b+c\right)=\dfrac{1}{\sqrt{2}}\sqrt{2a.\left(b+c\right)\left(b+c\right)}\le\dfrac{1}{\sqrt{2}}\sqrt{\left(\dfrac{2a+2b+2c}{3}\right)^3}=\dfrac{2\sqrt{3}}{9}\)

\(\Rightarrow S\ge\dfrac{1}{3.\dfrac{2\sqrt{3}}{9}}=\dfrac{\sqrt{3}}{2}\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết
KG
Xem chi tiết
LS
Xem chi tiết
TN
Xem chi tiết