ND

Cho a,b,c\(\ge\)0. a+b+c=1> Tìm GTLN của A=\(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\)

AN
26 tháng 6 2017 lúc 17:13

\(A=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\)

\(\sqrt[3]{\frac{4}{9}}A=\sqrt[3]{\frac{4}{9}}.\left(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\right)\)

\(\le\frac{a+b+\frac{2}{3}+\frac{2}{3}}{3}+\frac{b+c+\frac{2}{3}+\frac{2}{3}}{3}+\frac{c+a+\frac{2}{3}+\frac{2}{3}}{3}\)

\(=\frac{4}{3}+\frac{2}{3}\left(a+b+c\right)=2\)

\(\Rightarrow A\le\frac{2}{\sqrt[3]{\frac{4}{9}}}=\sqrt[3]{18}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
TN
26 tháng 6 2017 lúc 18:09

Áp dụng BĐT Holder ta có:

\(A^3=\left(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\right)^3\)

\(\le\left(1+1+1\right)\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=9\cdot2\left(a+b+c\right)=9\cdot2=18\)

\(\Rightarrow A^3\le18\Rightarrow A\le\sqrt[3]{18}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TM
Xem chi tiết
PT
Xem chi tiết
AN
Xem chi tiết
PA
Xem chi tiết
VD
Xem chi tiết
HD
Xem chi tiết
LL
Xem chi tiết
MN
Xem chi tiết