cho a,b,c,d thuộc Z thỏa mãn a^3+b^3=2(c^3-8d^3). chứng minh rằng a+b+c+d chia hết cho 3
cho a,b,c,d thuộc Z thỏa mãn a3+b3=2(c3-8d3). chứng minh a+b+c+d chi hết cho 3
Cho \(a,b,c,d\in Z\) thỏa mãn \(a^3+b^3=2\left(c^3-8d^3\right)\) . Chứng minh rằng \(a+b+c+d\)chia hết cho 3
Cho các số nguyên a,b, c,d thỏa mãn \(a^3+b^3=2\left(c^3-8d^3\right)\) Chứng minh rằng a+b+c+d chia hết cho 3.
Cho a,b,c,d là các số nguyên thỏa mãn \(a^3+b^3-2808^{2017}=2\left(c^3-8d^3\right)\)
Chứng minh \(a+b+c+d⋮3\)
a) Cho hai số dương thỏa mãn điều kiện a - b = a3 + b3. Chứng minh rằng a2 + b2 < 1.
b) Cho a, b, c, d thuộc Z thỏa mãn a3 + b3 = 2(c3 - 8d3). Chứng minh rằng a + b + c + d chia hết cho 3.
Bài 1:Cho a,b,c là các số nguyên đôi 1 khác nhau thỏa mãn a+b+c=2019.tính giá trị biểu thức
\(M=\frac{a^3}{\left(a+b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
Bài 2:Cho \(a+b+c=0;P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b};Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)
\(CMR\) \(P\cdot Q=9\)
Bài 3:Cho 3 số x;y;z đôi 1 khác nhau thỏa mãn x+y+z=0 và \(A=\frac{4xy-z^2}{xy+2z^2};B=\frac{4yz-x^2}{yz+2x^2};C=\frac{4xz-y^2}{xz+2y^2}\)
CMR A.B.C=1
1,Cho 4 số a,b,c,d thỏa mãn a+b+c+d = 0.
CMR: a^3+b^3+c^3=3(b+d)(ac-bd)
2, CMR:
a, n^4+6n^3+11n^2+6n chia hết cho 24 với mọi n thuộc Z
b,( m+1)(m+3)(m+5)(m+7)+15 chia hết cho m+6 với mọi m thuộc Z
Các bác giúp em với thứ 7 em phải nộp rồi
Cho a,b,c là 3 số thực dương thỏa mãn a3+b3+c3=1
CMR\(\frac{a^2+b^2}{ab\left(a+b\right)^3}+\frac{b^2+c^2}{bc\left(b+c\right)^3}+\frac{c^2+a^2}{ca\left(c+a\right)^3}\ge\frac{9}{4}\)