PB

Cho ABCD là hình tháng vuông A và D. Đường chéo BD vuông góc với BC. Biết AD = 12cm, DC = 25cm. Tính độ dài BC, biết BC < 20

A. BC = 15cm

B. BC = 16cm

C. BC = 14cm

D. BC = 17cm

CT
30 tháng 4 2018 lúc 13:19

Kẻ BE ⊥ CD tại E

Suy ra tứ giác ABED là hình chữ nhật (vì A ^ = D ^ = E ^ = 90 ∘ ) nên BE = AD = 12cm

Đặt EC = x (0 < x < 25) thì DE = 25 – x

Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông BCD ta có:

B E 2 = E D . E C ⇔ x ( 25 - x ) = 144 ⇔ x 2 - 25 x + 144 = 0

  x 2 - 16 x - 9 x + 144 = 0 <=> x(x – 16) – 9(x – 16) = 0 <=> (x – 16)(x – 9) = 0

⇔ x = 16 x = 9 (thỏa mãn)

Với EC = 16, theo định lý Pytago ta có BC = B E 2 + E C 2 = 12 2 + 16 2 = 20  (loại)

Với EC = 9, theo định lý Pytago ta có BC = B E 2 + E C 2 = 12 2 + 9 2 = 15  (nhận)

Vậy BC = 15cm

Đáp án cần chọn là: A

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
H24
Xem chi tiết
KA
Xem chi tiết
NT
Xem chi tiết
TA
Xem chi tiết
MH
Xem chi tiết
PB
Xem chi tiết
TH
Xem chi tiết
PA
Xem chi tiết