cho a,b,c > 0 thỏa mãn :a+b+c+ab+bc+ca=6abc
tìm giá trị nhỏ nhất của biểu thức: M = \(\dfrac{1}{a^2}\)+\(\dfrac{1}{b^2}\)+\(\dfrac{1}{c^2}\)
SỬ DỤNG BẤT ĐẲNG THỨC BUNHIACOPXKI
Cho a,b,c>0 thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{a^2+b^2+c^2}\)
MN giúp e với
Cho các số thực a, b, c thay đổi luôn thỏa mãn: a ≥ 1 , b ≥ 1 , c ≥ 1 và a b + b c + c a = 9 .Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = a 2 + b 2 + c 2 .
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S=a+b+c+ab+bc+ca với a,b,c là các số thực thỏa mãn \(a^2+b^2+c^2=3\)
Cho các số a,b,c khác 0 thỏa mãn ab+bc+ca=0.Tính giá trị biểu thức:
P=bc/a^2 +ca/b^2 +ab/c^2
Cho các số a,b,c thỏa mãn điều kiện ab+bc+ca=1. Tính giá trị nhỏ nhất của biểu thức P=(a2+2bc-1)(b2+2ca-1)(c2+2ab-1)
Cho các số thực dương a,b,c thỏa mãn a + b + c = 1
Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{9}{\left(ab+bc+ca\right)}+\dfrac{2}{a^2+b^2+c^2}.\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=1
Tìm giá trị nhỏ nhất của biểu thức :\(P=\dfrac{9}{2\left(ab+bc+ca\right)}+\dfrac{2}{a^2+b^2+c^2}\)
Cho a, b, c là ba số thực dương thỏa mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức
A=\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\)