3P

Cho ∆ABC vuông tại A, đường cao AH. Bt AB = 12cm, BC = 20cm.

a) Tính AH, AC, góc ABC.

b) Kẻ HM⊥AB tại M, HN⊥AC tại N. Cm AN × AC = AC² - HC²

c) Cm AH = MN; AM × MB + AN × NC = AH²

d) Cm tan³C = BM/CN  

NT
7 tháng 11 2023 lúc 18:38

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=20^2-12^2=256\)

=>AC=16(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>AH=9,6(cm)

Xét ΔABC vuông tại A có

\(sinABC=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{ABC}\simeq53^0\)

b: Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\)(1) và \(AN\cdot NC=HN^2\)

ΔAHC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(AH^2=AC^2-HC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AN\cdot AC=AC^2-HC^2\)

c: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

=>AH=MN

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot MB=HM^2\)

\(AM\cdot AB+AN\cdot NC\)

\(=HM^2+HN^2\)

\(=MN^2=AH^2\)

d: \(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)

\(=\left(\dfrac{AB^2}{BC}:\dfrac{AC^2}{BC}\right)^2\cdot\dfrac{AC}{AB}\)

\(=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3=tan^3C\)

Bình luận (0)

Các câu hỏi tương tự
DY
Xem chi tiết
ND
Xem chi tiết
TA
Xem chi tiết
NB
Xem chi tiết
VP
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
PB
Xem chi tiết
CD
Xem chi tiết