Xét ΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay \(AH=6\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{\sqrt{3}}{2}\)
\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{1}{2}\)
\(\tan\widehat{B}=\cot\widehat{C}=\sqrt{3}\)
\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{\sqrt{3}}{3}\)
Đúng 1
Bình luận (0)