H24

Cho ABC vuông tại A, �^ = 60 độ. a) Tìm góc �^ và so sánh ba cạnh của ABC. b) Tia phân giác của góc ABC cắt AC tại D , lấy điểm M thuộc cạnh BC sao cho AB = BM. Chứng minh ADB = MDB c) MD cắt AB tại N. Chứng minh AM// CN

KR
24 tháng 4 2023 lúc 20:43

`@` `\text {dnammv}`

`a,`

Xét `\Delta ABC:`

\(\widehat {A}+ \widehat {B}+ \widehat {C}=180^0 (\text {định lý tổng 3 góc trong 1} \Delta)\)

`90^0+ 60^0 + \hat {B}=180^0`

`-> \hat {B}=180^0-90^0-60^0=30^0`

`->`\(\widehat {A}> \widehat {B} > \widehat {C} (90^0>60^0>30^0)\)

`@` Theo định lý giữa góc và cạnh đối diện trong tam giác:

`-> \text {BC > AC > AB}`

`b,`

Xét `\Delta ABD` và `\Delta MBD`:

`\text {BD chung}`

\(\widehat {ABD}= \widehat {MBD}\) `(\text {tia phân giác}` `\hat {ABC})`

`AB = BC (g``t)`

`=> \Delta ABD = \Delta MBD (c-g-c)`

`c,` Vì `\Delta ABD = \Delta MBD (b)`

`-> \text {DA = DM (2 cạnh tương ứng)}`

`->` \(\widehat {BAD}= \widehat {BMD}\)`=90^0 (\text {2 góc tương ứng})`

Xét `\Delta ADN` và `\Delta MDC`:

`\text {DA = DM (CMT)}`

\(\widehat {ADN} = \widehat {MDC}\) `(\text {đối đỉnh})`

\(\widehat {BAD}= \widehat {BMD}\)`=90^0 (CMT)`

`=> \Delta ADN = \Delta MDC (cgv-gn)`

`-> \text {AN = MC (2 cạnh tương ứng)}`

Ta có: \(\left\{{}\begin{matrix}\text{BA = BM (gt)}\\\text{AN = MC (CMT)}\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}\text{BN = BA+AN}\\\text{BC = BM+MC}\end{matrix}\right.\)

`=> \text {BN = BC}`

Xét `\Delta BAM:`

`\text {BA = BM}`

`-> \Delta BAM` cân tại `B`

`->`\(\widehat {BAM}= \widehat {BMA}=\)\(\dfrac{180^0-\widehat{B}}{2}\) `(1)`

Xét `\Delta BNC`:

`\text {BN = BC (CMT)}`

`-> \Delta BNC` cân tại `B`

`->`\(\widehat {BNC} = \widehat {BCN}=\)\(\dfrac{180-\widehat{B}}{2}\) `(2)`

Từ `(1)` và `(2)`

`->`\(\widehat {BNC}= \widehat {BAM}\)

Mà `2` góc này nằm ở bị trí đồng vị

`-> \text {AM // NC (tính chất 2 đường thẳng //)}`loading...

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
AT
Xem chi tiết
VA
Xem chi tiết
NB
Xem chi tiết
DL
Xem chi tiết
H24
Xem chi tiết
VQ
Xem chi tiết
KH
Xem chi tiết
H24
Xem chi tiết