a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: Xét ΔHAC vuông tại H và ΔHBA vuông tại H có
\(\widehat{HAC}=\widehat{HBA}\)
Do đó: ΔHAC\(\sim\)ΔHBA
=>HA/HB=HC/HA
hay \(HA^2=HB\cdot HC\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: Xét ΔHAC vuông tại H và ΔHBA vuông tại H có
\(\widehat{HAC}=\widehat{HBA}\)
Do đó: ΔHAC\(\sim\)ΔHBA
=>HA/HB=HC/HA
hay \(HA^2=HB\cdot HC\)
Cho △ABC vuông tại A (AB<AC) có đường cao AH
a) Chứng minh : △HBA=△ABC
b)Chứng minh: AH2=HB.HC
c)Gọi E là điểm đối xứng với H qua điểm A, M là trung điểm của AH. Chứng minh CM⊥BE tại K
Giải giúp mình với ạ😩câu này khó quá mình không làm được
Câu 16 (3,0 điểm). Cho ABC vuông tại A( AB < AC) có đường cao AH, gọi M là trung điểm AC. Vẽ D là điểm đối xứng của H qua M .
a. Chứng minh tứ giác ADCH là hình chữ nhật.
b. Gọi E là điểm đối xứng của C qua H. Chứng minh : tứ giác AEHD là hình bình hành.
c. Kẻ EK AB tại K , gọi I là trung điểm AK , N là trung điểm BE.
Chứng minh : KE // IH
Câu 16 (3,0 điểm). Cho ABC vuông tại A( AB < AC) có đường cao AH, gọi M là trung điểm AC. Vẽ D là điểm đối xứng của H qua M .
a. Chứng minh tứ giác ADCH là hình chữ nhật.
b. Gọi E là điểm đối xứng của C qua H. Chứng minh : tứ giác AEHD là hình bình hành.
c. Kẻ EK AB tại K , gọi I là trung điểm AK , N là trung điểm BE.
Chứng minh : KE // IH
Cho tam giác ABC vuông tại A, đường cao AH. D đối xứng với H qua AB. E đối xứng với H qua AC. Gọi I là giao điểm của AB và DH. K là giao điểm của AC và EH
a) Chứng minh AIHK là hình chữ nhật
b) Chứng minh D, E, A thẳng hàng
c) Gọi m là trung điểm của BC chứng minh AM vuông góc với IK
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Gọi D là điểm đối xứng với D qua H, M lad điểm đối xứng với B qua H
a. Giả sử AH=2cm, BC=5cm. Tính diện tích tam giác ABC
b. Chứng minh tứ giác ABDM là hình thoi
c. Chứng minh AM vuông góc với CD
d. Gọi I là trung điểm của MC, N là trung điểm của DM và AC. Chứng minh góc HNI=90°
Cho tam giác ABC cân tại A, đường trung tuyến AH. Gọi O là trung điểm của AC, D là điểm đối xứng với H qua O. A. Chứng minh AH = HD B. Chứng minh tứ giác ABHD là hình có tâm đối xứng. C. Kẻ AE vuông góc với AC, E thuộc AC .Gọi M là trung điểm của HE. Chứng minh AM vuông góc với BE
a) Cho ∆ABC vuông tại A có đường cao AH. Gọi E, F lần lượt là hình chiếu của H
trên AB, AC. Chứng minh AEHF là hình chữ nhật.
b) Cho ∆ABC vuông tại A. Gọi M là trung điểm BC. Vẽ D là điểm đối xứng với A
qua M. Chứng minh ABDC là hình chữ nhật.