AT

Cho △ABC vuông tại a (AB<AC) có đường cao AH (H ϵ BC).Kẻ HD vuông góc với AB tại D và HE vuông góc với AC tại E.

      a)Chứng minh:tứ giác ADHE là hình chữ nhật

      b)Gọi F là điểm đối xứng của H qua D .Chứng minh tứ giác AEDF là hình bình hành.

      c)Gọi K là giao điểm của FA và HE.Chứng minh tứ giác ADEK là hình bình hành từ đó suy ra E là trung điểm HK.

     d)Đường thẳng qua H và song song với DE cắt AC tại M.Chứng minh tứ giác AHMK là hình thoi

NT
8 tháng 12 2023 lúc 5:11

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ADHE là hình chữ nhật

=>HD//AE và HD=AE

Ta có: HD//AE

D\(\in\)HF

Do đó: DF//AE

Ta có; HD=AE

HD=DF

Do đó: AE=DF

Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

c: Ta có: AEDF là hình bình hành

=>AF//DE

mà A\(\in\)KF

nên KA//ED

Ta có: EH//AD

E\(\in\)KH

Do đó: KE//AD

Xét tứ giác ADEK có

AD//EK

AK//DE

Do đó: ADEK là hình bình hành

=>AK=DE

mà DE=AF(AEDF là hình bình hành)

nên AF=AK

mà K,A,F thẳng hàng

nên A là trung điểm của KF

d: Xét tứ giác DHME có

DH//ME

DE//MH

Do đó: DHME là hình bình hành

=>DH=EM

mà DH=EA

nên EM=EA

=>E là trung điểm của AM

Xét tứ giác AHMK có

E là trung điểm chung của AM và HK

=>AHMK là hình bình hành

Hình bình hành AHMK có AM\(\perp\)HK

nên AHMK là hình thoi

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LT
Xem chi tiết
NN
Xem chi tiết
HK
Xem chi tiết
BL
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết