CA

Cho ∆ABC vuông góc tại A. Kẻ AH vuông góc với BC. Kẻ HP vuông góc với AB và kéo dài để có PE= PH. Kẻ HQ vuông góc với AC và kéo dài để có QF= QH. Chứng minh: a)E,A,F thẳng hàng và A là trung điểm của EF b) BE // CF c) AH= 3cm và AC= 4cm , tính HC và EF

SK
14 tháng 7 2021 lúc 20:37

Q là O hả bạn

Bình luận (0)
NT
18 tháng 8 2022 lúc 22:44

a) Xét ΔAHP vuông tại P và ΔAEP vuông tại P có 

AP chung

HP=EP(gt)

Do đó: ΔAHP=ΔAEP(Hai cạnh góc vuông)

Suy ra: \(\widehat{HAP}=\widehat{EAP}\)(hai góc tương ứng)

Xét ΔFAQ vuông tại Q và ΔHAQ vuông tại Q có 

AQ chung

QF=QH(gt)

Do đó: ΔFAQ=ΔHAQ(hai cạnh góc vuông)

Suy ra: \(\widehat{FAQ}=\widehat{HAQ}\)(hai góc tương ứng)

Ta có: \(\widehat{FAE}=\widehat{FAQ}+\widehat{HAQ}+\widehat{HAP}+\widehat{PAE}\)
\(=2\cdot\left(\widehat{HAQ}+\widehat{HAP}\right)\)

\(=2\cdot90^0=180^0\)

hay F,A,E thẳng hàng

Ta có: AH=AE(ΔAHP=ΔAEP)

mà AH=AF(ΔAQF=ΔAQH)

nên AE=AF

Ta có: F,A,E thẳng hàng(cmt)

mà AE=AF(cmt)

nên A là trung điểm của FE(đpcm)

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
DT
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết
PQ
Xem chi tiết
PQ
Xem chi tiết
PQ
Xem chi tiết
NH
Xem chi tiết
PN
Xem chi tiết