H24

Cho a,b,c thuộc khoảng 0 đến 1.
Chứng minh bất đẳng thức :
a - b^2 - c^3 -ab - bc - ca =< 1

TN
19 tháng 7 2017 lúc 11:20

Từ \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)và \(\hept{\begin{cases}b\ge b^2\\c\ge c^3\\abc\ge0\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)

\(\Rightarrow a+b+c-\left(ab+bc+ca\right)+abc\le1\)

\(\Rightarrow a+b^2+c^3-\left(ab+bc+ca\right)\le1\)

Bình luận (0)

Các câu hỏi tương tự
DP
Xem chi tiết
SL
Xem chi tiết
MH
Xem chi tiết
HA
Xem chi tiết
NM
Xem chi tiết
KV
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết