Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hai số thực a,b thay đổi thỏa mãn điều kiện\(a+b\ge1\) và \(a>0\). Tìm giá trị nhỏ nhất của biểu thức: \(A=\frac{8a^2+b}{4a}+b^2\)
Cho a,b,c là các số dương thỏa mãn điều kiện: \(5a^2+2abc+4b^2+3c^2=60\) Tìm GTLN của biểu thức: \(A=a+b+c\)
cho a,b,c >0
tìm GTLN của A=(a+b+c)/(4a+2b+c)(4c^2+3)
cho biểu thức A=a^2/bc+b^2/ac+c^2/ab . a,b,c là 3 số khác nhau thỏa mãn a+b+c=0. Tính A
Cho a;b;c là các số thực dương thỏa mãn abc = 1. Tìm GTLN của biểu thức:
\(T=\frac{a}{b^4+c^4+a}+\frac{b}{a^4+c^4+b}+\frac{c}{a^4+b^4+c}\)
Cho các số x,y,z thỏa mãn ( Chú ý : A^2+B^2+C^2=0 <=> A=B=C=0)
a, \(\left(2x-y\right)^2+\left(y-2\right)^2+\sqrt{x+y+z}=0\)
b, \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
Cho a,b,c,x,y,z khác 0 thỏa mãn x/a=y/b=z/c
Chứng minh rằng: x^2+y^2+z^2/ (ax+by+cz)^2=1/a^2+b^2+c^2
giúp mìk với nha mọi người
cho a, b, c là các số dương thỏa mãn a+b+c=1. tìm giá trị nhỏ nhất của biểu thức B=\(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ca+a^2}\)
bài 1 cho x, y thỏa mãn x+2y=1 tìm GTLN của P=4xy
bài 2 cho x,y,z>0 thỏa mãn x+y+z =4 CM : x+y>=xyz
bài 3: tìm GTLN của A= x^2 /(x^4+4)
bài 4:tìm GTLN M=x-2√x-5
pạn nào lm đc mún j mh xin hậu tạ :v :v
cho a, b ,c là độ dài ba cạnh của một tam giác và thỏa mãn hệ thức a + b + c = 1. CMR a2 + b2 + c2 < 1/2