TN

 Cho ∆ABC nội tiếp đường tròn tâm O đường kính AB sao cho AC < BC; E là một điểm thuộc đoạn BC (E khác B và C). Tia AE cắt đường tròn (O) tại điểm thứ hai D. Kẻ EH vuông góc với AB tại H.

1) Chứng minh tứ giác ACEH là tứ giác nội tiếp.

2) Tia CH cắt (O) tại điểm thứ hai F. Chứng minh rằng EH // DF.

3) Chứng minh rằng đường tròn ngoại tiếp ∆CHO đi qua điểm D.

4) Gọi I và K lần lượt là hình chiếu vuông góc của điểm F trên các đường thẳng CA và CB. Chứng minh rằng AB, DF, IK cùng đi qua một điểm.

IS
25 tháng 3 2020 lúc 21:16

a) Tứ giác ACEH có

\(\widehat{ACE}=\widehat{EHA}=90^0\)(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> \(\widehat{EAH}=\widehat{HCE}\)(cùng chắn EH)

lại có \(\widehat{ADF}=\widehat{ACF}\)(cùng chắn AF)

mà \(\widehat{ACF}+\widehat{HCE}=90^0\)do \(\widehat{ACE}=90^0\)

=>\(\widehat{EAH}+\widehat{ADF}=90^0\)

=> \(DF\perp AB\)

mà \(EH\perp AB\)

=> \(DF//EH\)

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TN
Xem chi tiết
TN
Xem chi tiết
LX
Xem chi tiết
TH
Xem chi tiết
NG
Xem chi tiết
PB
Xem chi tiết
VL
Xem chi tiết
LH
Xem chi tiết
NT
Xem chi tiết