Ôn tập: Tam giác đồng dạng

TP

Cho △ABC nhọn (AB<AC) có 2 đường cao AD và BE cắt nhau tại H.
a) CM: △HEA \(\sim\)  △HDB
b) Kẻ DK \(\perp\) AC tại K. CM : CD2 = CK.CA
c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. CM: FK  \(\perp\) DN tại S

AH
13 tháng 4 2021 lúc 12:28

Lời giải:
a) Xét tam giác $HEA$ và $HDB$ có:

$\widehat{HEA}=\widehat{HDB}=90^0$

$\widehat{EHA}=\widehat{DHB}$ (đối đỉnh)

$\Rightarrow \triangle HEA\sim \triangle HDB$ (g.g)

b) Xét tam giác $CKD$ và $CDA$ có:

$\widehat{C}$ chung

$\widehat{CKD}=\widehat{CDA}=90^0$ 

$\Rightarrow \triangle CKD\sim \triangle CDA$ (g.g)

$\Rightarrow \frac{CK}{CD}=\frac{CD}{CA}\Rightarrow CD^2=CK.CA$ (đpcm)

c) Xét tam giác $ADK$ và $DCK$ có:

$\widehat{AKD}=\widehat{DKC}=90^0$

$\widehat{ADK}=\widehat{DCK}$ (cùng phụ $\widehat{KDC}$)

$\Rightarrow \triangle ADK\sim \triangle DCK$ (g.g)

$\Rightarrow \frac{AD}{DC}=\frac{DK}{CK}\Leftrightarrow \frac{FD}{2DC}=\frac{DK}{2CN}$

$\Rightarrow \frac{FD}{DC}=\frac{DK}{CN}$

Tam giác $FDK$ và $DCN$ đồng dạng với nhau do:

$\frac{FD}{DC}=\frac{DK}{CN}$ (cmt)

$\widehat{FDK}=\widehat{DCN}$ (cùng phụ $\widehat{KDC}$)

$\Rightarrow \frac{DFK}=\widehat{CDN}$

$\Rightarrow \widehat{DFK}+\widehat{FDN}=\widehat{CDN}+\widehat{FDN}$

$\Leftrightarrow 180^0-\widehat{FSD}=\widehat{FDC}=90^0$

$\Rightarrow \widehat{FSD}=90^0$ nên ta có đpcm.

 

Bình luận (1)
AH
13 tháng 4 2021 lúc 12:34

Hình vẽ:

undefined

Bình luận (0)

Các câu hỏi tương tự
UT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VC
Xem chi tiết
PC
Xem chi tiết
TD
Xem chi tiết
GV
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết