Violympic toán 9

PP

Cho a,b,c là một số hữu tỉ và đôi một khác nhau chứng minh

A=\(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là một số hữu tỉ

NL
24 tháng 3 2019 lúc 21:26

Để đỡ khó nhìn, ta đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\c-a=z\end{matrix}\right.\) \(\Rightarrow x+y+z=0\)\(x;y;z\in Q\)

\(A=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}}\)

\(A=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{xz}+\frac{2}{yz}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(A=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\Rightarrow A\) hữu tỉ

Bình luận (0)
NT
25 tháng 3 2019 lúc 13:23

Hỏi đáp Toán

Bài giải

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
TP
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
JL
Xem chi tiết