Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

LD

cho a,b,c là các số thực thỏa mãn \(a^2+b^2+c^2=a+2b+3c=14\) . tính gt của biểu thức T = abc.

DD
10 tháng 10 2018 lúc 19:43

Ta có : \(\left\{{}\begin{matrix}a^2+b^2+c^2=14\\a+2b+3c=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2+c^2=14\left(1\right)\\2a+4b+6c=28\left(2\right)\end{matrix}\right.\)

Lấy \(\left(1\right)-\left(2\right)\Rightarrow a^2-2a+b^2-4b+c^2-6c=-14\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-4b+4\right)+\left(c^2-6c+9\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-2\right)^2=0\\\left(c-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)

\(\Rightarrow T=abc=1.2.3=6\)

Vậy \(T=6\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
MT
Xem chi tiết
ML
Xem chi tiết
VK
Xem chi tiết
ML
Xem chi tiết
NM
Xem chi tiết
NT
Xem chi tiết
MT
Xem chi tiết
TV
Xem chi tiết